3GPP TSG_CN5 (Open Service Access – OSA)

Meeting #14, Brighton, UK, 16 – 19 October 2001
N5-010966

Source:
Joint API working group.

Title:
Ways to obtain XML support in OSA / Parlay
Agenda Item:
9
Document for:
Discussion
Category:
other
Work Item ID:
OSA2
Doc Summary:

Specs involved:
29.198
Introduction

During last meeting it was discussed that beside the current IDL, there is a clear need to also have a XML support for the current state-of-the-art OSA / Parlay APIs, independent of any “Parlay X” initiative, see also N5-010894. In this contribution we want to clarify some of the remaining issues and outline how this could be achieved.

XML vs IDL

First of all it should be clarified that both IDL and XML are technology independent, where the purpose of IDL is to specify object-oriented, programming language level interfaces.  XML, on the other hand, is used to structure data. As such it can be used to populate pay load with a structure that is understood by both client and server as a method invocation.. Furthermore, with the aid of tools (e.g. IDL compiler or WSDL API generators), both approaches can be used to generate the necessary glue for linking into one’s target language (e.g. Java / C++). 

XML technology is already considered within the OSA/Parlay APIs specification.  XML is traditionally strong in describing data; XML schema technology is considered for constraining Service Properties.  The idea here is that the Service Properties and their values were specified in XML and the XML description is put in a textual data-type. This allows the XML description of the Service Properties to be transported e.g. from the SCS to the Framework and with XML schemas it is also possible to verify the correctness of the Service Property values against the specification.

As already indicated, it is also possible to specify an API in XML, e.g. the Location Information Forum (LIF) is using XML to define their APIs
. One of the main reasons for using XML in this way is that one believes it is easier to invoke network capabilities by web based technology as XML can be used directly over HTTP. 

Thus, it is of vital important that OSA / Parlay starts addressesing the needs of other developer communities, by reusing the existing information model. This would mean that we need to open our existing APIs for these communities and dispel the myth that OSA / Parlay technology independent UML is not fit for supporting web services. 

Towards an XML version of the API.

In order to achieve a XML support for the current OSA / Parlay APIs some outstanding issues need to be resolved.  For some of them a possible solution is already proposed in N5-010894, but nevertheless we feel it is useful to outline the issues and sketch multiple potential solutions.

· Distribution technology for the XML APIs: 

· in principle one could define an XML based set of messages, transferred using HTTP, as currently LIF is doing. 

· However, SOAP seems to be a more appropriate technology as this is especially designed as XML based request / response protocol
. SOAP is not yet an open solution although the W3C Recommendation of SOAP version 1.2 is expected to be available in May 2002. 

· For the OSA / Parlay API, the most promising option for achieving an XML version of the API seems to be Web Services Description Language (WSDL) as this specifically designed to describe the interface and functionality of a so-called Web-Service. A Web-Service is just a capability that can be invoked via standard internet protocols (e.g. XML/SOAP or XML/HTTP) an as such an implementation of the OSA/Parlay APIs could as well serve as Web-Service. WSDL can be seen as the IDL of web-services and also offers bindings to different distribution protocols like SOAP or HTTP and thus is independent of the actual underlying protocol. Asynchronous call-backs: as already noted in N5-010894 at the moment there is no defined solution when using SOAP to cope with asynchronous call-backs. A proposal that is one to one in line with the current OSA/Parlay API, where we have object references as parameter of the request message, is to define in the XML schemas an object reference as URL + String. In the request message the object reference would then be provided as a parameter together with all other parameters and in the response message the object reference would be located in the SOAP header.

· Production process of XML APIs: XML version of the API could be produced from the UML model as we are currently producing IDL from the model. An alternative could be that the XML is generated from the IDL as the OMG defines a set of rules to translate IDL into XML format
, see figure below. Furthermore, there are already tools available that are able to transform IDL to WSDL.

[image: image1.wmf]OSA UML

IDL

Annex A

XML

(Annex C)

WSDL

(Annex C)

Modelling

Definition

CORBA

HTTP

SOAP

Distribution


Conclusions & Recommendations

We propose the following actions / decisions are needed:

· Identify the most suitable solution for incorporating XML support for the current OSA/Parlay APIs. Could this be achieved by the joint API group specifying the APIs in WSDL? Or should we target to XML/SOAP or XML/HTTP ?

· Identify the way to generate WSDL / XML, either via IDL generated from the UML model or directly from the UML model.

· Identify the best solution for providing call-back functionality (object references) where we should look for the solution that is optimal alignment with the current APIs.


































� The Location Interworking Forum (LIF) is a ‘special interest group’ which proposes an XML/HTTP protocol, ‘based on Parlay/OSA’. In other words, having taken the Parlay API as a basis, and translated in into XML/HTTP.





� From the SOAP specification: SOAP is a lightweight protocol for exchange of information in a decentralized, distributed environment. It is an XML based protocol that consists of three parts: an envelope that defines a framework for describing what is in a message and how to process it, a set of encoding rules for expressing instances of application-defined datatypes, and a convention for representing remote procedure calls and responses.


� See OMG ORBOS CORBA/ SOAP RFP: Initial RFP: orbos/00-09-07 and Joint Initial CORBA/SOAP mapping submission: orbos/01-06-07. 











